Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(12): 18785-18796, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38349495

RESUMO

Recovering renewable chemicals from de-fatted microalgal residue derived from lipid extraction within the algal-derived biofuel sector is crucial, given the rising significance of microalgal-derived biodiesel as a potential substitute for petroleum-based liquid fuels. As a circular economy strategy, effective valorization of de-fatted biomass significantly improves the energetic and economic facets of establishing a sustainable algal-derived biofuel industry. In this scenario, this study investigates flash catalytic pyrolysis as a sustainable pathway for valorizing Scenedesmus sp. post-extraction residue (SPR), potentially yielding a bio-oil enriched with upgraded characteristics, especially renewable aromatic hydrocarbons. In the scope of this study, volatile products from catalytic and non-catalytic flash pyrolysis were characterized using a micro-furnace type temperature programmable pyrolyzer coupled with gas chromatographic separation and mass spectrometry detection (Py-GC/MS). Flash pyrolysis of SPR resulted in volatile products with elevated oxygen and nitrogen compounds with concentrations of 46.4% and 26.4%, respectively. In contrast, flash pyrolysis of lyophilized microalgal biomass resulted in lower concentrations of these compounds, with 40.9% oxygen and 17.3% nitrogen. Upgrading volatile pyrolysis products from SPR led to volatile products comprised of only hydrocarbons, while completely removing oxygen and nitrogen-containing compounds. This was achieved by utilizing a low-cost HZSM-5 catalyst within a catalytic bed at 500 °C. Catalytic experiments also indicate the potential conversion of SPR into a bio-oil rich in monocyclic aromatic hydrocarbons, primarily BETX, with toluene comprising over one-third of its composition, thus presenting a sustainable pathway for producing an aromatic hydrocarbon-rich bio-oil derived from SPR. Another significant finding was that 97.8% of the hydrocarbon fraction fell within the gasoline range (C5-C12), and 35.5% fell within the jet fuel range (C8-C16). Thus, flash catalytic pyrolysis of SPR exhibits significant promise for application in drop-in biofuel production, including green gasoline and bio-jet fuel, aligning with the principles of the circular economy, green chemistry, and bio-refinery.


Assuntos
Hidrocarbonetos Aromáticos , Óleos de Plantas , Polifenóis , Scenedesmus , Scenedesmus/metabolismo , Pirólise , Gasolina , Biocombustíveis , Temperatura Alta , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos/química , Catálise , Nitrogênio , Oxigênio , Biomassa
2.
Ciênc. rural (Online) ; 52(2): e20210068, 2022. tab, graf, ilus
Artigo em Inglês | VETINDEX, LILACS | ID: biblio-1286060

RESUMO

This research valorized Pachira aquatica Aubl.'s fruit shells (PAS) through its energetic characterization and flash pyrolysis for biofuels or chemicals production. The characterization was performed through proximate and ultimate analysis, bulk density, higher heating value (HHV), hemicellulose, cellulose and lignin content, thermogravimetric analysis and absorption spectra in the infrared region obtained by Fourier-transform infrared spectroscopy technique (FTIR). The analytical flash pyrolysis was performed at 500°C in a Py-5200 HP-R coupled to a gas chromatograph (Py-GC/MS). The PAS biomass presents potential for thermochemical energy conversion processes due to its low moisture and ash content, 76.90% of volatile matter, bulk density of 252.6 kg/m3 and HHV of 16.24 MJ/kg. Flash pyrolysis products are mostly phenols or light organic acids derived from the decomposition of polysaccharides. Results confirmed the potential of PAS to produce bio-phenolics, such as 4-methoxyphenol which is an important active ingredient for skin depigmentation used in drugs and cosmetics, and as phenolic extract that can be used as a precursor to resins, applications that convert this forest waste into bio products for industry into a green circular economy.


Este trabalho teve como objetivo a valorização das cascas dos frutos da Pachira aquatica Aubl. (PAC) através da sua caracterização energética e pirólise flash para produção de biocombustíveis ou produtos químicos. A caracterização foi realizada através de análises imediata e final, densidade aparente, poder calorífico superior (PCS), conteúdos de hemicelulose, celulose e lignina, análise termogravimétrica e espectros de absorção na região do infravermelho obtidos pela técnica de espectroscopia no infravermelho com transformada de Fourier (FTIR). A pirólise flash analítica foi realizada a 500 °C em equipamento Py-5200 HP-R acoplado a um cromatógrafo à gás (Py-GC/MS). A biomassa das PAC apresenta potencial para processos de conversão termoquímica de energia devido ao seu baixo teor de umidade e cinzas, além de 76,90% de materiais voláteis, densidade aparente de 252,6 kg/m3 e PCS igual a 16,24 MJ / kg. Os produtos da pirólise rápida são principalmente fenóis ou ácidos orgânicos leves derivados da decomposição de polissacarídeos. Os resultados confirmam o potencial das PAC para produzir bio-fenólicos, como o 4-metoxifenol que é um importante ingrediente ativo para despigmentação da pele usado em medicamentos e cosméticos, e como extrato fenólico que pode ser usado como precursor de resinas. Estas aplicações convertem esses resíduos florestais em produtos biológicos para a indústria em uma economia circular verde.


Assuntos
Pirólise , Biomassa , Bombacaceae , Frutas/química , Lignina , Polissacarídeos , Biocombustíveis
3.
Sci Rep ; 11(1): 16087, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373480

RESUMO

This study aims to analyze the products of the catalytic pyrolysis of naturally colored cotton residues, type BRS (seeds from Brazil), called BRS-Verde, BRS-Rubi, BRS-Topázio and BRS-Jade. The energy characterization of biomass was evaluated through ultimate and proximate analysis, higher heating value, cellulose, hemicellulose and lignin content, thermogravimetric analysis and apparent density. Analytical pyrolysis was performed at 500 °C in an analytical pyrolyzer from CDS Analytical connected to a gas chromatograph coupled to the mass spectrometer (GC/MS). The pyrolysis vapors were reformed at 300 and 500 °C through thermal and catalytic cracking with zeolites (ZSM-5 and HZSM-5). It has been noticed that pyrolysis vapor reforming at 500 °C promoted partial deoxygenation and cracking reactions, while the catalytic reforming showed better results for the product deoxygenation. The catalyst reforming of pyrolysis products, especially using HZSM-5 at 500 °C, promoted the formation of monoaromatics such as benzene, toluene, xylene and styrene, which are important precursors of polymers, solvents and biofuels. The main influence on the yields of these aromatic products is due to the catalytic activity of ZSM-5 favored by increased temperature that promotes cracking reactions due expanded zeolites channels.

4.
Environ Sci Pollut Res Int ; 26(14): 14259-14265, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30864027

RESUMO

Cotton crops generate millions of tons of lignocellulosic waste in Brazil that could be used in energy generation; however, the main destination of this raw material is soil incorporation. The aim of this work was to perform an energetic characterization and evaluation of briquettes produced from different agricultural waste of naturally colored cotton for power generation. The cultivars Brasil Sementes (BRS) Jade and Topazio were studied, with white cotton (BRS 286) as standard for comparison purposes. Two different parts of each species, stalk and cotton shell, were analyzed by bulk density, proximate analysis, higher heating value, cellulose, hemicellulose, protein, fat and lignin content, thermogravimetric analysis, and briquette mechanical strength. The results of the energetic characterization indicated a higher energetic potential of the colored species when compared with the white cotton, especially because of the volatile matter content, fixed carbon, and higher heating value. The briquette mechanical strength was higher in the samples formulated by a mixture of stalk and shell. Finally, it was concluded that the waste from colored cotton cultivars, Jade and Topazio, is capable to generate briquettes with good mechanical and physico-chemical characteristics, especially those formed by the mixture of stalk and shell.


Assuntos
Fontes Geradoras de Energia , Gossypium/química , Resíduos/análise , Biomassa , Brasil , Celulose/análise , Gossypium/crescimento & desenvolvimento , Calefação , Lignina/análise , Proteínas de Plantas/análise
5.
Environ Sci Pollut Res Int ; 25(14): 13760-13774, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29508197

RESUMO

There is global concern about acid rain and other pollution which is caused by the consumption of oil. By decreasing sulfur content in the oil, we can reduce unwanted emissions and acid rain. Shale was used which is a solid waste generated in the pyrolysis of shale, impregnated with Zn as an adsorbent which removes sulfur present in fuels from the hexane/toluene model solution. An influence of the agitation time (60-180 min), temperature (25-35 °C), adsorbent mass (0.1-0.25 g), and initial sulfur concentration (100-250 ppm) factorial 24 with three central points totaling 19 experiments was applied to investigate the effect of the variables on the efficiency of sulfur removal in fuels. The values of the parameters tested for maximum sulfur removal were obtained as follows: contact time = 180 min, temperature = 35 °C, adsorbent mass = 0.25 g, and initial sulfur concentration = 100 ppm. The mathematical model proposed with R2 99.97% satisfied the experimental data. This may provide a theoretical basis for new research and alternative uses for tailings of schist industrialization in order to evaluate its potential.


Assuntos
Poluentes Ambientais/isolamento & purificação , Eliminação de Resíduos , Projetos de Pesquisa , Enxofre/isolamento & purificação , Zinco/química , Adsorção , Poluentes Ambientais/química , Modelos Teóricos , Enxofre/química , Temperatura
6.
Environ Sci Pollut Res Int ; 24(16): 14142-14150, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28417328

RESUMO

Biofuels have been seen as potential sources to meet future energy demand as a renewable and sustainable energy source. Despite the fact that the production technology of first-generation biofuels is consolidated, these biofuels are produced from foods crops such as grains, sugar cane, and vegetable oils competing with food for crop use and agricultural land. In recent years, it was found that microalgae have the potential to provide a viable alternative to fossil fuels as source of biofuels without compromising food supplies or arable land. On this scenario, this paper aims to demonstrate the energetic potential to produce bio-oil and chemicals from microalgae Chlorella vulgaris and Arthrospira platensis. The potential of these biomasses was evaluated in terms of physical-chemical characterization, thermogravimetric analysis, and analytical pyrolysis interfaced with gas chromatograph (Py-GC/MS). The results show that C. vulgaris and A. platensis are biomasses with a high heating value (24.60 and 22.43 MJ/kg) and low ash content, showing a high percentage of volatile matter (72.49 and 79.42%). These characteristics confirm their energetic potential for conversion process through pyrolysis, whereby some important aromatic compounds such as toluene, styrene, and phenol were identified as pyrolysis products, which could turn these microalgae a potential for biofuels and bioproduct production through the pyrolysis.


Assuntos
Biocombustíveis , Chlorella vulgaris , Spirulina , Cromatografia Gasosa-Espectrometria de Massas , Microalgas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...